A live imaging-friendly slice culture method using collagen membranes

一种利用胶原膜进行实时成像的切片培养方法

阅读:5
作者:Ari Ogaki, Tasuku Araki, Masaya Ishikawa, Yuji Ikegaya, Ryuta Koyama

Aim

Organotypic brain slice culture preserves the geographical position of neurons and neuronal circuits. The slice cultures also maintain both non-neuronal cell types and the surrounding extracellular matrix. The interface method has been widely used for slice cultures, in which brain slices are placed on semiporous polytetrafluoroethylene (PTFE) membranes. However, a low optical transparency of PTFE membrane makes it difficult to perform live imaging of deep regions of slice cultures using an inverted microscope. To overcome the issue, we evaluated the suitability of using collagen membranes for slice cultures, especially focusing on live imaging of the cellular dynamics of green fluorescent protein (GFP)-expressing microglia.

Conclusion

Collagen membranes are suitable for live imaging of cellular dynamics in slice cultures using an inverted microscope.

Methods

Entorhinohippocampal slices were cultured on either collagen or PTFE membranes. The influence of membrane type on the ability to observe deep regions of slice cultures was examined by live imaging using an inverted microscope.

Results

Collagen membranes were thinner and had better optical transparency compared with PTFE membranes. There were no differences in cell viability, density of neurons or microglia. The densify of visible short branches of microglia in live imaging was higher in collagen membranes than PTFE membranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。