Pretreatment with propofol restores intestinal epithelial cells integrity disrupted by mast cell degranulation in vitro

丙泊酚预处理可恢复因肥大细胞脱颗粒而破坏的肠上皮细胞完整性

阅读:6
作者:J Li, J Huang, R Zhang, Y Lin, Q Chen, X Gan

Abstract

Propofol has been shown to against intestinal reperfusion injury when treated either before or after ischemia, during which mast cell could be activated. The aim of this study was to evaluate the role of propofol in restoring the intestinal epithelial cells integrity disrupted by mast cell activation or the released tryptase after activation in vitro. We investigated the effect of: (1) tryptase on Caco-2 monolayers in the presence of PAR-2 inhibitor or propofol, (2) mast cell degranulation in a Caco-2/LAD-2 co-culture model in the presence of propofol, and (3) propofol on mast cell degranulation. Epithelial integrity was detected using transepithelial resistance (TER) and permeability to fluorescein isothiocyanate (FITC)-dextran (the apparent permeability coefficient, Papp). The expression of junctional proteins zonula occludens-1 (ZO-1/TJP1) and occludin were determined using western blot analysis and immunofluorescence microscopy. The intracellular levels of reactive oxidative species (ROS) and Ca2+ were measured using flow cytometry. Tryptase directly enhanced intestinal barrier permeability as demonstrated by significant reductions in TER, ZO-1, and occludin protein expression and concomitant increases in Papp. The intestinal barrier integrity was restored by PAR-2 inhibitor but not by propofol. Meanwhile, mast cell degranulation resulted in epithelial integrity disruption in the Caco-2/LAD-2 co-culture model, which was dramatically attenuated by propofol. Mast cell degranulation caused significant increases in intracellular ROS and Ca(2+) levels, which were blocked by propofol and NAC. Propofol pretreatment can inhibit mast cell activation via ROS/Ca(2+) and restore the intestinal barrier integrity induced by mast cell activation, instead of by tryptase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。