Effect of the Membrane Composition of Giant Unilamellar Vesicles on Their Budding Probability: A Trade-Off between Elasticity and Preferred Area Difference

巨型单层囊泡的膜组成对其出芽概率的影响:弹性和优先面积差异之间的权衡

阅读:4
作者:Ylenia Miele, Gábor Holló, István Lagzi, Federico Rossi

Abstract

The budding and division of artificial cells engineered from vesicles and droplets have gained much attention in the past few decades due to an increased interest in designing stimuli-responsive synthetic systems. Proper control of the division process is one of the main challenges in the field of synthetic biology and, especially in the context of the origin of life studies, it would be helpful to look for the simplest chemical and physical processes likely at play in prebiotic conditions. Here we show that pH-sensitive giant unilamellar vesicles composed of mixed phospholipid/fatty acid membranes undergo a budding process, internally fuelled by the urea-urease enzymatic reaction, only for a given range of the membrane composition. A gentle interplay between the effects of the membrane composition on the elasticity and the preferred area difference of the bilayer is responsible for the existence of a narrow range of membrane composition yielding a high probability for budding of the vesicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。