Macrophage scavenger receptor A1 promotes skeletal muscle regeneration after hindlimb ischemia

巨噬细胞清道夫受体A1促进后肢缺血后骨骼肌再生

阅读:9
作者:Siying Wang, Saiya Wang, Wenhan Cai, Jie Wang, Jianan Huang, Qing Yang, Hui Bai, Bin Jiang, Jingjing Ben, Hanwen Zhang, Xudong Zhu, Xiaoyu Li, Qi Chen

Abstract

The macrophage-mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Therefore, macrophage-based therapeutic targets need to be explored for ischemic disease. In the current study, we found that the mRNA levels of scavenger receptor A1 ( Sr-a1) were elevated in patients with critical limb ischemia, based on an analysis of the Gene Expression Omnibus data. We then investigated the role and underlying mechanisms of macrophage SR-A1 in a mouse hindlimb ischemia (HLI) model. Compared with the Sr-a1 fl/fl mice, the Lyz Cre/+/ Sr-a1 flox/flox ( Sr-a1 ΔMΦ) mice showed significantly reduced laser Doppler blood flow in the ischemic limb on day seven after HLI. Consistently, histological analysis revealed that the ischemic limb of the Sr-a1 ΔMΦ mice exhibited more severe and prolonged necrotic morphology, inflammation, fibrosis, decreased vessel density, and delayed regeneration than that of the control Sr-a1 fl/fl mice. Furthermore, restoring wild-type myeloid cells to the Sr-a1 knockout mice effectively improved the Doppler perfusion in the ischemic limb and mitigated skeletal muscle damage seven days after HLI. Consistent with these in vivo findings, co-cultivating macrophages with the mouse myoblast cell line C2C12 revealed that the Sr-a1 -/- bone marrow macrophages significantly inhibited myoblast differentiation in vitro. Mechanistically, SR-A1 enhanced the skeletal muscle regeneration in response to HLI by inhibiting oncostatin M production via suppression of the NF-κB signaling activation. These findings indicate that SR-A1 may be a promising candidate protein to improve tissue repair and regeneration in peripheral ischemic arterial disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。