Reducing Bias and Quantifying Uncertainty in Fluorescence Produced by PCR

减少 PCR 荧光的偏差和量化不确定性

阅读:6
作者:Robert F DeJaco, Matthew J Roberts, Erica L Romsos, Peter M Vallone, Anthony J Kearsley

Abstract

We present a new approach for relating nucleic-acid content to fluorescence in a real-time Polymerase Chain Reaction (PCR) assay. By coupling a two-type branching process for PCR with a fluorescence analog of Beer's Law, the approach reduces bias and quantifies uncertainty in fluorescence. As the two-type branching process distinguishes between complementary strands of DNA, it allows for a stoichiometric description of reactions between fluorescent probes and DNA and can capture the initial conditions encountered in assays targeting RNA. Analysis of the expected copy-number identifies additional dynamics that occur at short times (or, equivalently, low cycle numbers), while investigation of the variance reveals the contributions from liquid volume transfer, imperfect amplification, and strand-specific amplification (i.e., if one strand is synthesized more efficiently than its complement). Linking the branching process to fluorescence by the Beer's Law analog allows for an a priori description of background fluorescence. It also enables uncertainty quantification (UQ) in fluorescence which, in turn, leads to analytical relationships between amplification efficiency (probability) and limit of detection. This work sets the stage for UQ-PCR, where both the input copy-number and its uncertainty are quantified from fluorescence kinetics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。