Brexpiprazole, a Serotonin-Dopamine Activity Modulator, Can Sensitize Glioma Stem Cells to Osimertinib, a Third-Generation EGFR-TKI, via Survivin Reduction

血清素-多巴胺活性调节剂 Brexpiprazole 可通过降低 Survivin 水平,增强胶质瘤干细胞对第三代 EGFR-TKI 奥希替尼的敏感性

阅读:9
作者:Shuhei Suzuki, Masahiro Yamamoto, Tomomi Sanomachi, Keita Togashi, Asuka Sugai, Shizuka Seino, Takashi Yoshioka, Chifumi Kitanaka, Masashi Okada

Abstract

Glioblastoma is a primary brain tumor associated with a poor prognosis due to its high chemoresistance capacity. Cancer stem cells (CSCs) are one of the mechanisms of chemoresistance. Although therapy targeting CSCs is promising, strategies targeting CSCs remain unsuccessful. Abnormal activation of epidermal growth factor receptors (EGFRs) due to amplification, mutation, or both of the EGFR gene is common in glioblastomas. However, glioblastomas are resistant to EGFR tyrosine kinase inhibitors (EGFR-TKIs), and overcoming resistance is essential. Brexpiprazole is a new, safe serotonin-dopamine activity modulator used for schizophrenia and depression that was recently reported to have anti-CSC activity and function as a chemosensitizer. Here, we examined its chemosensitization effects on osimertinib, a third-generation EGFR-TKI with an excellent safety profile, in glioma stem cells (GSCs), which are CSCs of glioblastoma. Brexpiprazole treatment sensitized GSCs to osimertinib and reduced the expression of survivin, an antiapoptotic factor, and the pharmacological and genetic inhibition of survivin mimicked the effects of brexpiprazole. Moreover, co-treatment of brexpiprazole and osimertinib suppressed tumor growth more efficiently than either drug alone without notable toxicity in vivo. This suggests that the combination of brexpiprazole and osimertinib is a potential therapeutic strategy for glioblastoma by chemosensitizing GSCs through the downregulation of survivin expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。