Mechanism of erythropoietin-induced M2 microglia polarization via Akt / Mtor / P70S6k signaling pathway in the treatment of brain injury in premature mice and its effect on biofilm

促红细胞生成素通过Akt/Mtor/P70S6k信号通路诱导M2型小胶质细胞极化在早产小鼠脑损伤治疗中的机制及对生物膜的影响

阅读:17
作者:Xiuling Wu, Bo Wang, Qiling Ma, Yunfang Zhang, Ji Xu, Zhongyuan Zhang, Guangfu Chen

Abstract

We investigated the mechanism of erythropoietin (EPO) in brain injury in premature mice based on Akt/mTOR/p70S6K signaling pathway. The brain injury model group of premature mice was obtained by intraperitoneal injection of lipopolysaccharide during pregnancy. Normal mice were taken as the control group. The model mice were divided into low-dose EPO (1,000 IU/kg, L-EPO), medium-dose EPO (2,500 IU/kg, M-EPO), and high-dose EPO groups (5,000 IU/kg, H-EPO) by intraperitoneal injection. The levels of malondialdehyde (MDA) and total superoxide dismutase (T-SOD) were detected. TUNEL staining and Western blotting were used to detect the differences in neuronal apoptosis index (AI), microglial polarization marker protein, and Akt/mTOR/p70S6K-related protein expression levels in each group. Compared with the control group, the protein levels of AI, MDA, Bax, and iNOS in the model, L-EPO, and M-EPO groups were significantly increased, while the T-SOD level and Bcl-2, ARG1, p-Akt, p-mTOR, and p-70S6K protein levels were significantly decreased (P < 0.05). Compared with the model group, AI, MAD levels and Bax, iNOS protein expression levels in L-EPO, M-EPO, and H-EPO groups were significantly decreased, while T-SOD level and Bcl-2, ARG1, p-Akt, p-mTOR, and p-70S6K protein levels were significantly increased. The changes were dose-dependent. In summary, EPO can activate microglia transformation from M1 to M2 through Akt/mTOR/p70S6K signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。