Square wave voltammetry based electrochemical determination of affinity of cholesterol triethylene glycol modified DNA-aptamers for protoporphyrin IX

基于方波伏安法的电化学测定胆固醇三乙二醇修饰的DNA适体对原卟啉IX的亲和力

阅读:3
作者:Abdul Wahab Aliyu, Muhammad Najmi Mohd Nazri, Nur Fatihah Mohd Zaidi, Khairul Mohd Fadzli Mustaffa

Abstract

Recent advancement in molecular medicine has seen applications of advanced biotechnology tools such as aptamer technology in therapeutics and diagnostics. Aptamer technology has witnessed various approaches including "Click-Chemistry" towards modifying aptamer structure to improve its potentials, but limited studies have reported the influence of such alteration on aptamer's specificity and affinity for their targets. Here, we utilized square wave voltammetry (SWV) electrochemical sensing based on heme to show the effects of cholesterol-triethylene-glycol (COL-TEG) modification of protoporphyrin-IX DNA-aptamers (OKA_24 and OKA_26) on their affinity for heme. Binding was evaluated by immobilizing 5 μM of heme onto cysteamine-glutaraldehyde-coated gold-electrode to construct electrochemical biosensor. Sensing of native/modified-aptamer was achieved by incubating their varying concentrations (9.76 nM - 10 μM) with heme-coated gold-electrode in HKSCM buffer pH 5, for 15 min. Chloroquine (2.5 μM) and non-binding HPIX-aptamer (2.5 μM) served as controls. Ferrocene was the redox solution used for SWV analysis. Protoporphyrin-IX DNA-aptamers specificity for heme was not tarnish by lipid conjugation. Selective binding of 2.5 μM of COL-TEG-OKA_24 and COL-TEG-OKA_26 to heme induced peak-current reduction by 30.68% and 24% respectively. Incubation of OKA_24 and OKA_26 aptamers produced resistance to current flow through the heme-coated gold-electrode by 23.21% and 14.4 8% respectively. Affinity SWV reveals that cholesterol conjugation decreases the affinity of COL-TEG-OKA_24 (KD<math><msub><mrow><mi>K</mi></mrow><mrow><mi>D</mi></mrow></msub></math> = 4 7.13 ± 3.767 nM) and COL-TEG-OKA_24 (KD<math><msub><mrow><mi>K</mi></mrow><mrow><mi>D</mi></mrow></msub></math> = 84.6 ± 8.7 nM) by 3- fold. There is a need to check the impact of such alteration on inhibition of heme to hemozoin polymerization, a process mediated by Plasmodium falciparum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。