Comparative Effects of Di-(2-ethylhexyl)phthalate and Di-(2-ethylhexyl)terephthalate Metabolites on Thyroid Receptors: In Vitro and In Silico Studies

邻苯二甲酸二(2-乙基己基)酯和对苯二甲酸二(2-乙基己基)酯代谢物对甲状腺受体的比较影响:体外和计算机模拟研究

阅读:7
作者:Nicolas Kambia, Isabelle Séverin, Amaury Farce, Laurence Dahbi, Thierry Dine, Emmanuel Moreau, Valérie Sautou, Marie-Christine Chagnon

Abstract

Plasticizers added to polyvinylchloride (PVC) used in medical devices can be released into patients' biological fluids. Di-(2-ethylhexyl)phthalate (DEHP), a well-known reprotoxic and endocrine disruptor, must be replaced by alternative compounds. Di-(2-ethylhexyl) terephthalate (DEHT) is an interesting candidate due to its lower migration from PVC and its lack of reprotoxicity. However, there is still a lack of data to support the safety of its human metabolites with regard to their hormonal properties in the thyroid system. The effects of DEHT metabolites on thyroid/hormone receptors (TRs) were compared in vitro and in silico to those of DEHP. The oxidized metabolites of DEHT had no effect on T3 receptors whereas 5-hydroxy-mono-(ethylhexyl)phthalate (5-OH-MEHP) appeared to be primarily an agonist for TRs above 0.2 µg/mL with a synergistic effect on T3. Monoesters (MEHP and mono-(2-ethylhexyl)terephthalate, MEHT) were also active on T3 receptors. In vitro, MEHP was a partial agonist between 10 and 20 µg/mL. MEHT was an antagonist at non-cytotoxic concentrations (2-5 µg/mL) in a concentration-dependent manner. The results obtained with docking were consistent with those of the T-screen and provide additional information on the preferential affinity of monoesters and 5-OH-MEHP for TRs. This study highlights a lack of interactions between oxidized metabolites and TRs, confirming the interest of DEHT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。