Potentiation of Antibiotic Activity of Aztreonam against Metallo-β-Lactamase-Producing Multidrug-Resistant Pseudomonas aeruginosa by 3- O-Substituted Difluoroquercetin Derivatives

3-O-取代二氟槲皮素衍生物增强氨曲南对产生金属-β-内酰胺酶的多重耐药铜绿假单胞菌的抗生素活性

阅读:5
作者:Seongyeon Lee, Taegum Lee, Mi Kyoung Kim, Joong Hoon Ahn, Seri Jeong, Ki-Ho Park, Youhoon Chong

Abstract

The combination of aztreonam (ATM) and ceftazidime-avibactam (CAZ-AVI; CZA) has shown therapeutic potential against serine-β-lactamase (SBL)- and metallo-β-lactamase (MBL)-producing Enterobacterales. However, the ability of CZA to restore the antibiotic activity of ATM is severely limited in MBL-producing multidrug-resistant (MDR) Pseudomonas aeruginosa strains because of the myriad of intrinsic and acquired resistance mechanisms associated with this pathogen. We reasoned that the simultaneous inhibition of multiple targets associated with multidrug resistance mechanisms may potentiate the antibiotic activity of ATM against MBL-producing P. aeruginosa. During a search for the multitarget inhibitors through a molecular docking study, we discovered that di-F-Q, the previously reported efflux pump inhibitor of MDR P. aeruginosa, binds to the active sites of the efflux pump (MexB), as well as various β-lactamases, and these sites are open to the 3-O-position of di-F-Q. The 3-O-substituted di-F-Q derivatives were thus synthesized and showed hereto unknown multitarget MDR inhibitory activity against various ATM-hydrolyzing β-lactamases (AmpC, KPC, and New Delhi metallo-β-lactamase (NDM)) and the efflux pump of P. aeruginosa, presumably by forming additional hydrophobic contacts with the targets. The multitarget MDR inhibitor 27 effectively potentiated the antimicrobial activity of ATM and reduced the MIC of ATM more than four-fold in 19 out of 21 MBL-producing P. aeruginosa clinical strains, including the NDM-producing strains which were highly resistant to various combinations of ATM with β-lactamase inhibitors and/or efflux pump inhibitors. Our findings suggest that the simultaneous inhibition of multiple MDR targets might provide new avenues for the discovery of safe and efficient MDR reversal agents which can be used in combination with ATM against MBL-producing MDR P. aeruginosa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。