Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics

蛋白质污染物很重要:为 DDA 和 DIA 蛋白质组学构建通用蛋白质污染物库

阅读:8
作者:Ashley M Frankenfield, Jiawei Ni, Mustafa Ahmed, Ling Hao

Abstract

Mass spectrometry-based proteomics is constantly challenged by the presence of contaminant background signals. In particular, protein contaminants from reagents and sample handling are almost impossible to avoid. For data-dependent acquisition (DDA) proteomics, an exclusion list can be used to reduce the influence of protein contaminants. However, protein contamination has not been evaluated and is rarely addressed in data-independent acquisition (DIA). How protein contaminants influence proteomic data is also unclear. In this study, we established new protein contaminant FASTA and spectral libraries that are applicable to all proteomic workflows and evaluated the impact of protein contaminants on both DDA and DIA proteomics. We demonstrated that including our contaminant libraries can reduce false discoveries and increase protein identifications, without influencing the quantification accuracy in various proteomic software platforms. With the pressing need to standardize proteomic workflow in the research community, we highly recommend including our contaminant FASTA and spectral libraries in all bottom-up proteomic data analysis. Our contaminant libraries and a step-by-step tutorial to incorporate these libraries in various DDA and DIA data analysis platforms can be valuable resources for proteomic researchers, freely accessible at https://github.com/HaoGroup-ProtContLib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。