DNA-Lysozyme Nanoarchitectonics: Quantitative Investigation on Charge Inversion and Compaction

DNA-溶菌酶纳米结构:电荷反转和压缩的定量研究

阅读:8
作者:Rongyan Zhang, Yanwei Wang, Guangcan Yang

Abstract

The interaction between DNA and proteins is fundamentally important not only for basic research in biology, but also for potential applications in nanotechnology. In the present study, the complexes formed by λ DNA and lysozyme in a dilute aqueous solution have been investigated using magnetic tweezers (MT), dynamic light scattering (DLS), and atomic force microscopy (AFM). We found that lysozyme induced DNA charge inversion by measuring its electrophoretic mobility by DLS. Lysozyme is very effective at neutralizing the positive charge of DNA, and its critical charge ration to induce charge inversion in solution is only 2.26. We infer that the high efficiency of charge neutralization is due to the highly positively charged (+8 e) and compact structure of lysozyme. When increasing the concentration of lysozymes from 6 ng·µL-1 to 70 ng·µL-1, DNA mobility (at fixed concentration of 2 ng·µL-1) increases from -2.8 to 1.5 (in unit of 10-4 cm2·V-1·S), implying that the effective charge of DNA switches its sign from negative to positive in the process. The corresponding condensing force increased from 0 pN to its maximal value of about 10.7 pN at concentrations of lysozyme at 25 ng·µL-1, then decreases gradually to 3.8 pN at 200 ng·µL-1. The maximal condensing force occurs at the complete DNA charge neutralization point. The corresponding morphology of DNA-lysozyme complex changes from loosely extensible chains to compact globule, and finally to less compact flower-like structure due to the change of attached lysozyme particles as observed by AFM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。