Proteasome inactivation promotes p38 mitogen-activated protein kinase-dependent phosphatidylinositol 3-kinase activation and increases interleukin-8 production in retinal pigment epithelial cells

蛋白酶体失活促进 p38 丝裂原活化蛋白激酶依赖性磷脂酰肌醇 3-激酶活化并增加视网膜色素上皮细胞中白细胞介素 8 的产生

阅读:6
作者:Alexandre F Fernandes, Qingning Bian, Jian-Kang Jiang, Craig J Thomas, Allen Taylor, Paulo Pereira, Fu Shang

Abstract

Oxidative stress and inflammation are implicated in the pathogenesis of many age-related diseases. We have demonstrated previously that oxidative inactivation of the proteasome is a molecular link between oxidative stress and overexpression of interleukin (IL)-8. Here, we elucidated a novel signaling cascade that leads to up-regulation of IL-8 in response to proteasome inactivation. The sequence of events in this cascade includes proteasome inactivation, activation of mitogen-activated protein kinase kinase (MKK)3/MKK6, activation of p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor phosphorylation, phosphatidylinositol 3-kinase (PI3K) activation and increased IL-8 expression. Blocking any of these signaling pathways abolished the up-regulation of IL-8 induced by proteasome inhibition. Although Akt is also activated in response to proteasome inactivation, we found that the PI3K-dependent up-regulation of IL-8 is independent of 3-phosphoinositide-dependent protein kinase (PDK)1 and Akt. Inhibition of PDK1 and Akt with chemical inhibitors or expression of constitutive active Akt had little effects on IL-8 expression in response to proteasome inactivation. In contrast, inhibition of interleukin 2-inducible T cell kinase, a kinase downstream of PI3K, significantly reduced the expression and secretion of IL-8 in response to proteasome inactivation. Together, these data elucidate a novel signaling network that leads to increased IL-8 production in response to proteasome inactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。