Characterization of protective immune responses against Neisseria gonorrhoeae induced by intranasal immunization with adhesion and penetration protein

粘附和穿透蛋白鼻腔内免疫诱导的针对淋病奈瑟菌的保护性免疫反应的特征

阅读:9
作者:Lingyin Xia, Qin Lu, Xiaosu Wang, Chengyi Jia, Yujie Zhao, Guangli Wang, Jianru Yang, Ningqing Zhang, Xun Min, Jian Huang, Meirong Huang

Abstract

Drug-resistant N. gonorrhoeae is an urgent threat to global public health, and vaccine development is the best long-term strategy for controlling gonorrhea. We have previously shown that adhesion and penetration protein (App) play a role in the adhesion, invasion, and reproductive tract colonization of N. gonorrhoeae. Here, we describe the immune response induced by intranasal immunization with passenger and translocator fragments of App. The recombinant App passenger and translocator fragments induced high titers of IgG and IgA antibodies in serum and vaginal washes. Antibodies produced by App passenger and the combination of passenger and translocator mediated the killing of N. gonorrhoeae via serum bactericidal activity and opsonophagocytic activity, whereas antisera from translocator-immunized groups had lower bactericidal activity and opsonophagocytic activity. The antisera of the App passenger and translocator, alone and in combination, inhibited the adhesion of N. gonorrhoeae to cervical epithelial cells in a concentration-dependent manner. Nasal immunization with App passenger and translocator fragments alone or in combination induced high levels of IgG1, IgG2a, and IgG2b antibodies and stimulated mouse splenocytes to secrete cytokines IFN-γ and IL-17A, suggesting that Th1 and Th17 cellular immune responses were activated. In vivo experiments have shown that immune App passenger and transporter fragments can accelerate the clearance of N. gonorrhoeae in the vagina of mice. These data suggest that the App protein is a promising N. gonorrhoeae vaccine antigen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。