Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility

通过不可逆固定纤连蛋白对 316L 不锈钢、镍钛和钴铬表面进行改性:改善冠状动脉支架的生物相容性

阅读:5
作者:Hesam Dadafarin, Evgeny Konkov, Hojatollah Vali, Irshad Ali, Sasha Omanovic

Abstract

An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress. Deconvolution of the Fn amide I band indicated that the secondary structure of Fn changes significantly upon immobilization to the SAM-functionalized metal substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed that the spacing between Fn molecules on a modified commercial stent surface is approximately 66 nm, which has been reported to be the most appropriate spacing for cell/surface interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。