Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids

致癌 β-catenin 和 PIK3CA 指导肠道类器官中的网络状态和癌症表型

阅读:6
作者:Pamela Riemer, Mattias Rydenfelt, Matthias Marks, Karen van Eunen, Kathrin Thedieck, Bernhard G Herrmann, Nils Blüthgen, Christine Sers, Markus Morkel

Abstract

Colorectal cancer is driven by cooperating oncogenic mutations. In this study, we use organotypic cultures derived from transgenic mice inducibly expressing oncogenic β-catenin and/or PIK3CAH1047R to follow sequential changes in cancer-related signaling networks, intestinal cell metabolism, and physiology in a three-dimensional environment mimicking tissue architecture. Activation of β-catenin alone results in the formation of highly clonogenic cells that are nonmotile and prone to undergo apoptosis. In contrast, coexpression of stabilized β-catenin and PIK3CAH1047R gives rise to intestinal cells that are apoptosis-resistant, proliferative, stem cell-like, and motile. Systematic inhibitor treatments of organoids followed by quantitative phenotyping and phosphoprotein analyses uncover key changes in the signaling network topology of intestinal cells after induction of stabilized β-catenin and PIK3CAH1047R We find that survival and motility of organoid cells are associated with 4EBP1 and AKT phosphorylation, respectively. Our work defines phenotypes, signaling network states, and vulnerabilities of transgenic intestinal organoids as a novel approach to understanding oncogene activities and guiding the development of targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。