Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site

大囊化装置中骨髓干细胞皮下移植治疗糖尿病大鼠;临床可移植部位

阅读:6
作者:Sawsan M El-Halawani, Mahmoud M Gabr, Mohamed El-Far, Mahmoud M Zakaria, Sherry M Khater, Ayman F Refaie, Mohamed A Ghoneim

Aim

Diabetes mellitus (DM) is a serious, chronic and epidemic disease. Its effective therapy with exogenous insulin places an overwhelming burden on the patient's lifestyle. Moreover, pancreatic islet transplantation is limited by the scarceness of donors and the need for chronic immunosuppression. Cell-based therapy is considered an alternative source of insulin-producing cells (IPCs); encapsulating such cellular grafts in immunoisolating devices would protect the graft from immune attack without the need for immunosuppression. Herein, we investigate the ability of TheraCyte capsule as an immunoisolating device to promote the maturation of differentiated rat bone marrow derived mesenchymal stem cells (BM-MSCs), transplanted subcutaneously to treat diabetic rats in comparison with intratesticular transplantation. Main

Methods

Rat BM-MSC were differentiated into IPCs, and either encapsulated in TheraCyte capsules for subcutaneous transplantation or transplanted intratesticular into diabetic rats. Serum insulin, C-peptide & blood glucose levels of transplanted animals were monitored. Retrieved cells were further characterized by immunofluorescence staining and gene expression analysis. Key findings: Differentiated rat BM-MSC were able to produce insulin in vitro, ameliorate hyperglycemia in vivo and survive for 6 months post transplantation. Transplanted cells induced higher levels of insulin and C-peptide, lower levels of blood glucose in the cured animals of both experimental groups. Gene expression revealed a further in vivo maturation of the implanted cells. Significance: These data suggest that TheraCyte encapsulation of allogeneic differentiated stem cells are capable of reversing hyperglycemia, which holds a great promise as a new cell based, clinically applicable therapies for diabetes.

Significance

These data suggest that TheraCyte encapsulation of allogeneic differentiated stem cells are capable of reversing hyperglycemia, which holds a great promise as a new cell based, clinically applicable therapies for diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。