Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation

苯基喹喔啉酮 CFTR 激活剂作为便秘的潜在促分泌疗法

阅读:5
作者:Onur Cil, Puay-Wah Phuan, Jung-Ho Son, Jie S Zhu, Colton K Ku, Niloufar Akhavan Tabib, Andrew P Teuthorn, Loretta Ferrera, Nicholas C Zachos, Ruxian Lin, Luis J V Galietta, Mark Donowitz, Mark J Kurth, Alan S Verkman

Abstract

Constipation is a common condition for which current treatments can have limited efficacy. By high-throughput screening, we recently identified a phenylquinoxalinone activator of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel that stimulated intestinal fluid secretion and normalized stool output in a mouse model of opioid-induced constipation. Here, we report phenylquinoxalinone structure-activity analysis, mechanism of action, animal efficacy data in acute and chronic models of constipation, and functional data in ex vivo primary cultured human enterocytes. Structure-activity analysis was done on 175 phenylquinoxalinone analogs, including 15 synthesized compounds. The most potent compound, CFTRact-J027, activated CFTR with EC50 ∼ 200 nM, with patch-clamp analysis showing a linear CFTR current-voltage relationship with direct CFTR activation. CFTRact-J027 corrected reduced stool output and hydration in a mouse model of acute constipation produced by scopolamine and in a chronically constipated mouse strain (C3H/HeJ). Direct comparison with the approved prosecretory drugs lubiprostone and linaclotide showed substantially greater intestinal fluid secretion with CFTRact-J027, as well as greater efficacy in a constipation model. As evidence to support efficacy in human constipation, CFTRact-J027 increased transepithelial fluid transport in enteroids generated from normal human small intestine. Also, CFTRact-J027 was rapidly metabolized in vitro in human hepatic microsomes, suggesting minimal systemic exposure upon oral administration. These data establish structure-activity and mechanistic data for phenylquinoxalinone CFTR activators, and support their potential efficacy in human constipation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。