A coating strategy to achieve effective local charge separation for photocatalytic coevolution

实现光催化共进化有效局部电荷分离的涂层策略

阅读:6
作者:Tianshuo Zhao, Rito Yanagi, Yijie Xu, Yulian He, Yuqi Song, Meiqi Yang, Shu Hu

Abstract

Semiconductors of narrow bandgaps and high quantum efficiency have not been broadly utilized for photocatalytic coevolution of H2 and O2 via water splitting. One prominent issue is to develop effective protection strategies, which not only mitigate photocorrosion in an aqueous environment but also facilitate charge separation. Achieving local charge separation is especially challenging when these reductive and oxidative sites are placed only nanometers apart compared to two macroscopically separated electrodes in a photoelectrochemical cell. Additionally, the driving force of charge separation, namely the energetic difference in the barrier heights across the two type of sites, is small. Herein, we used conformal coatings attached by nanoscale cocatalysts to transform two classes of tunable bandgap semiconductors, i.e., CdS and GaInP2, into stable and efficient photocatalysts. We used hydrogen evolution and redox-mediator oxidation for model study, and further constructed a two-compartment solar fuel generator that separated stoichiometric H2 and O2 products. Distinct from the single charge-transfer direction reported for conventional protective coatings, the coating herein allows for concurrent injection of photoexcited electrons and holes through the coating. The energetic difference between reductive and oxidative catalytic sites was regulated by selectivity and local kinetics. Accordingly, the charge separation behavior was validated using numerical simulations. Following this design principle, the CdS/TiO2/Rh@CrOx photocatalysts evolved H2 while oxidizing reversible polysulfide redox mediators at a maximum rate of 90.6 μmol⋅h-1⋅cm-2 by stacking three panels. Powered by a solar cell, the redox-mediated solar water-splitting reactor regenerated the polysulfide repeatedly and achieved solar-to-hydrogen efficiency of 1.7%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。