Flavonol Glycosides: In Vitro Inhibition of DPPIV, Aldose Reductase and Combating Oxidative Stress are Potential Mechanisms for Mediating the Antidiabetic Activity of Cleome droserifolia

黄酮醇糖苷:体外抑制 DPPIV、醛糖还原酶和对抗氧化应激是介导醉蝶花抗糖尿病活性的潜在机制

阅读:7
作者:Amira Abdel Motaal, Heba H Salem, Dalia Almaghaslah, Abdulrhman Alsayari, Abdullatif Bin Muhsinah, Mohammad Y Alfaifi, Serag Eldin I Elbehairi, Ali A Shati, Hesham El-Askary

Abstract

Diabetes is a major health problem that is associated with high risk of various complications. Medicinal plants hold great promise against diabetes. The traditional use of Cleome droserifolia as an antidiabetic agent was correlated to its flavonol glycosides content. In the current study, five major flavonol glycosides appeared on the RP-HPLC chromatogram of the aqueous extract namely; quercetin-3-O-β-d-glucosyl-7-O-α-rhamnoside (1), isorhamnetin-7-O-β-neohesperidoside (2), isorhamnetin-3-O-β-d-glucoside (3) kaempferol-4'-methoxy-3,7-O-α-dirhamnoside (4), and isorhamnetin-3-O-α-(4″-acetylrhamnoside)-7-O-α-rhamnoside (5). The inhibitory activities of these compounds were tested in vitro against several enzymes involved in diabetes management. Only the relatively less polar methoxylated flavonol glycosides (4, 5) showed mild to moderate α-amylase and α-glucosidase inhibitory activities. Compounds 1-4 displayed remarkable inhibition of dipeptidyl peptidase IV (DPPIV) enzyme (IC50 0.194 ± 0.06, 0.573 ± 0.03, 0.345 ± 0.02 and 0.281 ± 0.05 µg/mL, respectively) comparable to vildagliptin (IC50 0.154 ± 0.02 µg/mL). Moreover, these compounds showed high potential in preventing diabetes complications through inhibiting aldose reductase enzyme and combating oxidative stress. Both isorhamnetin glycoside derivatives (2, 3) exhibited the highest activities in aldose reductase inhibition and compound 2 (IC50 5.45 ± 0.26 µg/mL) was even more potent than standard quercetin (IC50 7.77 ± 0.43 µg/mL). Additionally, these flavonols exerted excellent antioxidant capacities through 2, 2-diphenyl-1-picrylhydrazil (DPPH) and ferric reducing antioxidant (FRAP) assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。