Patterning of wound-induced intercellular Ca(2+) flashes in a developing epithelium

伤口诱导的上皮细胞间 Ca(2+) 闪烁的模式

阅读:10
作者:Cody Narciso, Qinfeng Wu, Pavel Brodskiy, George Garston, Ruth Baker, Alexander Fletcher, Jeremiah Zartman

Abstract

Differential mechanical force distributions are increasingly recognized to provide important feedback into the control of an organ's final size and shape. As a second messenger that integrates and relays mechanical information to the cell, calcium ions (Ca(2+)) are a prime candidate for providing important information on both the overall mechanical state of the tissue and resulting behavior at the individual-cell level during development. Still, how the spatiotemporal properties of Ca(2+) transients reflect the underlying mechanical characteristics of tissues is still poorly understood. Here we use an established model system of an epithelial tissue, the Drosophila wing imaginal disc, to investigate how tissue properties impact the propagation of Ca(2+) transients induced by laser ablation. The resulting intercellular Ca(2+) flash is found to be mediated by inositol 1,4,5-trisphosphate and depends on gap junction communication. Further, we find that intercellular Ca(2+) transients show spatially non-uniform characteristics across the proximal-distal axis of the larval wing imaginal disc, which exhibit a gradient in cell size and anisotropy. A computational model of Ca(2+) transients is employed to identify the principle factors explaining the spatiotemporal patterning dynamics of intercellular Ca(2+) flashes. The relative Ca(2+) flash anisotropy is principally explained by local cell shape anisotropy. Further, Ca(2+) velocities are relatively uniform throughout the wing disc, irrespective of cell size or anisotropy. This can be explained by the opposing effects of cell diameter and cell elongation on intercellular Ca(2+) propagation. Thus, intercellular Ca(2+) transients follow lines of mechanical tension at velocities that are largely independent of tissue heterogeneity and reflect the mechanical state of the underlying tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。