ATP protects anti-PD-1/radiation-induced cardiac dysfunction by inhibiting anti-PD-1 exacerbated cardiomyocyte apoptosis, and improving autophagic flux

ATP 通过抑制抗 PD-1 加剧的心肌细胞凋亡和改善自噬通量来保护抗 PD-1/放射引起的心脏功能障碍

阅读:4
作者:Jing Wang, Jing Zhao, Zhijun Meng, Rui Guo, Ruihong Yang, Caihong Liu, Jia Gao, Yaoli Xie, Xiangying Jiao, Heping Fang, Jianli Zhao, Yajing Wang, Jimin Cao

Abstract

The synergy between radiotherapy and immunotherapy in treating thoracic cancers presents a potent therapeutic advantage, yet it also carries potential risks. The extent and nature of cumulative cardiac toxicity remain uncertain, prompting the need to discern its mechanisms and devise effective mitigation strategies. Radiation alone or in combination with an anti- Programmed cell death protein1 (PD-1) antibody significantly reduced cardiac function in C57BL/6J mice, and this pathologic effect was aggravated by anti-PD-1 (anti-PD-1 + radiation). To examine the cellular mechanism that causes the detrimental effect of anti-PD-1 upon cardiac function after radiation, AC16 human cardiomyocytes were used to study cardiac apoptosis and cardiac autophagy. Radiation-induced cardiomyocyte apoptosis was significantly promoted by anti-PD-1 treatment, while anti-PD-1 combined radiation administration blocked the cardiac autophagic flux. Adenosine 5'-triphosphate (ATP) (a molecule that promotes lysosomal acidification) not only improved autophagic flux in AC16 human cardiomyocytes, but also attenuated apoptosis induced by radiation and anti-PD-1 treatment. Finally, ATP administration in vivo significantly reduced radiation-induced and anti-PD-1-exacerbated cardiac dysfunction. We demonstrated for the first time that anti-PD-1 can aggravate radiation-induced cardiac dysfunction via promoting cardiomyocyte apoptosis without affecting radiation-arrested autophagic flux. ATP enhanced cardiomyocyte autophagic flux and inhibited apoptosis, improving cardiac function in anti-PD-1/radiation combination-treated animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。