Directly Printed Low-Cost Nanoparticle Sensor for Vibration Measurement during Milling Process

直接印刷低成本纳米粒子传感器用于铣削过程中的振动测量

阅读:5
作者:Soo-Hong Min, Tae Hun Lee, Gil-Yong Lee, Daniel Zontar, Christian Brecher, Sung-Hoon Ahn

Abstract

A real-time, accurate, and reliable process monitoring is a basic and crucial enabler of intelligent manufacturing operation and digital twin applications. In this study, we represent a novel vibration measurement method for workpiece during the milling process using a low-cost nanoparticle vibration sensor. We directly printed the vibration sensor based on silver nanoparticles positioned onto a polyimide substrate using an aerodynamically-focused nanomaterials printing system, which is a direct printing technique for inorganic nanomaterials positioned onto a flexible substrate. Since it does not require any post-process such as chemical etching and heat treatment, a highly sensitive vibration sensor composed of a microscale porous structure was fabricated at a cost of several cents each. Furthermore, accurate and reliable vibration data was obtained by simple and direct attachment to a workpiece. In this study, we discussed the performance of vibration measurement of a fabricated sensor in comparison to a commercial vibration sensor. Using frequency and power spectrum analysis of obtained data, we directly measured the vibration of workpiece during the milling process, according to a process parameter. Lastly, we applied a fabricated sensor for the digital twins of turbine blade manufacturing in which vibration greatly affects the quality of the product to predict the process defects in real-time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。