In Vitro and In Vivo Evaluations of Berberine-Loaded Microparticles Filled In-House 3D Printed Hollow Capsular Device for Improved Oral Bioavailability

对内部 3D 打印空心胶囊装置中填充的载小檗碱微粒进行体内和体外评估,以提高口服生物利用度

阅读:13
作者:Dinesh Choudhury, Aishwarya Jala, Upadhyayula Suryanarayana Murty, Roshan M Borkar, Subham Banerjee

Abstract

The low oral bioavailability, short biological half-life, high dose, and frequent dosing of berberine (BBR) contribute to its restricted clinical use despite its extensive pharmacological activity. Thus, the objective of this study was to formulate sustained-release microparticles (MPs) using a pH-independent release polymer and to evaluate their potential to improve the oral bioavailability of BBR. BBR loaded MPs were prepared using the emulsion crosslinking method and evaluated for particle size, circularity, morphology, entrapment efficiency, solid-state analysis, swelling index, and in vitro BBR release study fitted with different models of release kinetics. The MPs exhibited desired particle sizes ranges between 11.09-11.62 μm and were almost spherical in shape, as confirmed by the circularity value and micrographic images. A loss of BBR crystallinity was observed after encapsulation in MPs, as evident from various solid-state analyses. The final optimized batch (F3) showed highest % BBR entrapment efficiency value of 81.63% ± 4.9. The in vitro BBR release performance in both acidic and alkaline media showed the desired sustained release behavior from the crosslinked MPs, where the maximum BBR release was observed at alkaline pH, which is in accordance with the swelling study data. In the in vivo study, the oral absorption profiles of BBR from both pristine and MPs formats were investigated using in-house prototyped 3D printed hollow capsules as a unit dose carrier. In vivo data showed sustained and prolonged absorption behavior of BBR from MPs compared to their pristine counterparts, which resulted in a cumulative increment of relative oral bioavailability to mitigate the aforementioned issues related to BBR. Graphical Abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。