Identification of Sclareol As a Natural Neuroprotective Cav 1.3-Antagonist Using Synthetic Parkinson-Mimetic Gene Circuits and Computer-Aided Drug Discovery

使用合成帕金森模拟基因电路和计算机辅助药物发现鉴定香紫苏醇作为天然神经保护 Cav 1.3-拮抗剂

阅读:7
作者:Hui Wang, Mingqi Xie, Giorgio Rizzi, Xin Li, Kelly Tan, Martin Fussenegger

Abstract

Parkinson's disease (PD) results from selective loss of substantia nigra dopaminergic (SNc DA) neurons, and is primarily caused by excessive activity-related Ca2+ oscillations. Although L-type voltage-gated calcium channel blockers (CCBs) selectively inhibiting Cav 1.3 are considered promising candidates for PD treatment, drug discovery is hampered by the lack of high-throughput screening technologies permitting isoform-specific assessment of Cav-antagonistic activities. Here, a synthetic-biology-inspired drug-discovery platform enables identification of PD-relevant drug candidates. By deflecting Cav-dependent activation of nuclear factor of activated T-cells (NFAT)-signaling to repression of reporter gene translation, they engineered a cell-based assay where reporter gene expression is activated by putative CCBs. By using this platform in combination with in silico virtual screening and a trained deep-learning neural network, sclareol is identified from a essential oils library as a structurally distinctive compound that can be used for PD pharmacotherapy. In vitro studies, biochemical assays and whole-cell patch-clamp recordings confirmed that sclareol inhibits Cav 1.3 more strongly than Cav 1.2 and decreases firing responses of SNc DA neurons. In a mouse model of PD, sclareol treatment reduced DA neuronal loss and protected striatal network dynamics as well as motor performance. Thus, sclareol appears to be a promising drug candidate for neuroprotection in PD patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。