Site-specific and kinetic characterization of enzymatic and nonenzymatic protein acetylation in bacteria

细菌中酶促和非酶促蛋白质乙酰化的位点特异性和动力学表征

阅读:8
作者:Miao-Miao Wang, Di You, Bang-Ce Ye

Abstract

Reversible Nε-lysine acetylation has emerging as an important metabolic regulatory mechanism in microorganisms. Herein, we systematically investigated the site-specific and kinetic characterization of enzymatic (lysine acetyltransferase) and nonenzymatic acetylation (AcP-dependent or Acyl-CoA-dependent), as well as their different effect on activity of metabolic enzyme (AMP-forming acetyl-CoA synthetase, Acs). It was found that Bacillus subtilis acetyl-CoA synthetase (BsAcsA) can be acetylated in vitro either catalytically by lysine acetyltransferase BsAcuA and Ac-CoA (at low concentration), or nonenzymatically by Ac-CoA or AcP (at high concentration). Two distinct mechanisms show preference for different lysine acetylation site (enzymatic acetylation for K549 and nonenzymatic acetylation for K524), and reveal different dynamics of relative acetylation changes at these lysine sites. The results demonstrated that lysine residues on the same protein exhibit different acetylation reactivity with acetyl-phosphate and acetyl-CoA, which was determined by surface accessibility, three-dimensional microenvironment, and pKa value of lysine. Acetyl-CoA synthetase is inactivated by AcuA-catalyzed acetylation, but not by nonenzymatic acetylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。