Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing

评估成分对多肽基水凝胶物理化学和生物学特性的影响及其在伤口愈合中的潜在应用

阅读:6
作者:Johnel Giliomee, Lisa C du Toit, Pradeep Kumar, Bert Klumperman, Yahya E Choonara

Abstract

In this study, the effect of crosslinking and concentration on the properties of a new library of low-concentration poly(Lys60-ran-Ala40)-based hydrogels for potential application in wound healing was investigated in order to correlate the hydrogel composition with the desired physicochemical and biofunctional properties to expand the assortment of poly-l-lysine (PLL)-based hydrogels suitable for wound healing. Controlled ring-opening polymerization (ROP) and precise hydrogel compositions were used to customize the physicochemical and biofunctional properties of a library of new hydrogels comprising poly(l-lysine-ran-l-alanine) and four-arm poly(ethylene glycol) (P(KA)/4-PEG). The chemical composition and degree of crosslinking via free amine quantification were analyzed for the P(KA)/4-PEG hydrogels. In addition, the rheological properties, pore morphology, swelling behavior and degradation time were characterized. Subsequently, in vitro cell studies for evaluation of the cytotoxicity and cell adhesion were performed. The 4 wt% 1:1 functional molar ratio hydrogel with P(KA) concentrations as low as 0.65 wt% demonstrated low cytotoxicity and desirable cell adhesion towards fibroblasts and thus displayed a desirable combination of properties for wound healing application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。