Fluid-based augmentation of magnetic resonance visualization of interventional devices

基于流体的介入器械磁共振可视化增强

阅读:8
作者:Jens Kübler, Petros Martirosian, Johann Jacoby, Georg Gohla, Moritz T Winkelmann, Konstantin Nikolaou, Rüdiger Hoffmann

Conclusions

Fluid-based contrast agents might be applied to interventional devices and thus temporarily augment the artifact ensuring both visibility and safe navigation.

Methods

Twenty-one fluorinated ethylene propylene catheters (inner diameter 760 μm) were filled with three different contrast media at various concentrations (Ferucarbotran, Resovist®, Bayer Schering Pharma; Manganese dichloride, MnCl2, Sigma-Aldrich; Gadobutrol, Gadovist®, Bayer Schering Pharma). Artifact appearance was determined in an ex vivo phantom at 1.5 T using three different sequences: T1-weighted three-dimensional volume interpolated breath-hold examination, T2-weighted turbo spin echo, and T1-weighted fast low angle shot. Catheter angulation to the main magnetic field (B0) was varied. Influence of parameters on artifact diameters was assessed with a multiple linear regression similar to an analysis of variance.

Purpose

To evaluate the transient artifact augmentation of microtubes in magnetic resonance imaging by fluid injection.

Results

Artifact diameter was significantly influenced by the contrast agent (p < 0.001), concentration of the contrast agent (p < 0.001), angulation of the phantom to B0 with the largest artifact at 90° (p < 0.001), and encoding direction with a larger diameter in phase encoding direction (PED, p < 0.001). Mean artifact diameters at 90° angulation to B0 in PED were 18.5 ± 5.4 mm in 0.5 mmol/ml Ferucarbotran, 8.7 ± 2.5 mm in 1 mmol/ml Gadobutrol, and 11.6 ± 4.6 mm in 5 mmol/ml MnCl2 . Conclusions: Fluid-based contrast agents might be applied to interventional devices and thus temporarily augment the artifact ensuring both visibility and safe navigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。