pouC Regulates Expression of bmp4 During Atrioventricular Canal Formation in Zebrafish

pouC 在斑马鱼房室管形成过程中调节 bmp4 的表达

阅读:7
作者:Minoti Bhakta, Mahesh S Padanad, John P Harris, Christina Lubczyk, James F Amatruda, Nikhil V Munshi

Background

Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation.

Conclusions

Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.

Results

Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. Conclusions: Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。