Ecofriendly synthesized Zeolite 4A for the treatment of a multi-cationic contaminant-based effluent: Central composite design (CCD) statistical approach

环保型合成沸石 4A 用于处理多阳离子污染物废水:中心复合设计 (CCD) 统计方法

阅读:6
作者:Joseph M Nseke, Nomsa P Baloyi

Abstract

One of the key aspects of futureproofing the sustainability of life on earth lies in the protection of the hydrosphere, particularly from soluble heavy metal ion pollutants. In the current study, the central composite design and optimization of the ion-exchange process have been carried out for the simultaneous removal of selected cations; Cd2+, Cu2+, and Zn2+ cations using synthesized zeolite 4A. X-ray diffraction analysis confirmed the formation of zeolite 4A. The Brunauer-Emmett-Teller (BET) surface area of the synthesized zeolite was 32 m2/g. Results mainly indicate that there is a strong relationship between the experimental data and central composite design-based models of ion removal efficiency with R2 > 0.9 and the lack of fit less than 0.1 %. All the selected ion exchange parameters (time, dosage, pH, and temperature) were found to be statistically significant, with a p-value less than 0.05. For the complete simultaneous removal of selected cations, the optimal zeolite dosage, pH, and contact time are 1.2 g/100 cm3, 6, and 3 h. The optimal temperature ranges from 25 to 27 °C. The initial concentration of each selected cation is 450 mg/L. The ion exchange is in good agreement with the Freundlich and Langmuir isotherm models. Based on the Langmuir isotherm model, the maximum Cd2+, Cu2+, and Zn2+ uptake capacity values of zeolite are 103, 99.89, and 82.08 mg/g, respectively. In this study, it has been mainly inferred that CCD can be considered a useful tool for the modeling and optimization of zeolite ion exchange applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。