High-throughput microfluidic single-cell trapping arrays for biomolecular and imaging analysis

用于生物分子和成像分析的高通量微流体单细胞捕获阵列

阅读:4
作者:Xuan Li, Abraham P Lee

Abstract

Single-cell analysis is of critical importance in revealing population heterogeneity, identifying minority sub-populations of interest, as well as discovering unique characteristics of individual cells. Microfluidic platforms work at the scale comparable to cell diameter and is suitable for single-cell manipulation. Here we present a microfluidic trapping array which is able to rapidly and deterministically trap single-cells in highly-packed microwells. This chapter first describes the design and fabrication protocols of the trapping array, and then presents its two representative applications: single-cell mRNA probing when integrated with a dielectrophoretic nanotweezer (DENT), and live-cell real-time imaging when combined with fluorescence lifetime imaging microscopy (FLIM). As the single-cell trapping efficiency is determined by the channel design instead of the flow rate, this trapping array can be coupled with different microfluidic sample processing units with different flow rates for various single-cell analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。