Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner

可透过血脑屏障的壳聚糖寡糖以剂量和聚合程度依赖的方式干扰 β-淀粉样蛋白聚集并减轻 β-淀粉样蛋白介导的神经毒性和神经炎症

阅读:6
作者:Limeng Zhu, Ruilian Li, Siming Jiao, Jinhua Wei, Yalu Yan, Zhuo A Wang, Jianjun Li, Yuguang Du

Abstract

It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might be effective therapeutic methods for Alzheimer's disease (AD) treatment. This study was designed to explore interference of chitosan oligosaccharides (COS) on β-(1-42)-amyloid protein (Aβ42) aggregation and Aβ42-induced cytotoxicity. Here it was demonstrated that COS showed good blood-brain barrier (BBB) penetration ability in vitro and in vivo. The experimental results showed that COS efficiently interfered with Aβ42 aggregation in dose- and degree of polymerization (DP)-dependent manners, and COS monomer with DP6 showed the best effect on preventing conformational transition into β-sheet-rich structures. Based on the binding affinity analysis by microscale thermophoresis (MST), it was confirmed that COS could directly bind with Aβ42 in a DP-dependent manner. Our findings demonstrated that different performance of COS monomers with different DPs against Aβ42 assembly was, to some extent, attributable to their different binding capacities with Aβ42. As a result, COS significantly ameliorated Aβ42-induced cytotoxicity. Taken together, our studies would point towards a potential role of COS in treatment of AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。