Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy

对不同萎缩模式下胸腺亚群的比较分析确定了活性氧清除剂 N-乙酰半胱氨酸,可提高感染和脂多糖诱导的胸腺萎缩期间胸腺细胞的存活率

阅读:6
作者:Shamik Majumdar, Vasista Adiga, Abinaya Raghavan, Supriya Rajendra Rananaware, Dipankar Nandi

Abstract

The development of immunocompetent T cells entails a complex pathway of differentiation in the thymus. Thymic atrophy occurs with ageing and during conditions such as malnutrition, infections and cancer chemotherapy. The comparative changes in thymic subsets under different modes of thymic atrophy and the mechanisms involved are not well characterized. These aspects were investigated, using mice infected with Salmonella Typhimurium, injection with lipopolysaccharide (LPS), an inflammatory but non-infectious stimulus, etoposide (Eto), a drug used to treat some cancers, and dexamethasone (Dex), a steroid used in some inflammatory diseases. The effects on the major subpopulations of thymocytes based on multicolour flow cytometry studies were, first, the CD4- CD8- double-negative (DN) cells, mainly DN2-4, were reduced with infection, LPS and Eto treatment, but not with Dex. Second, the CD8+ CD3lo immature single-positive cells (ISPs) were highly sensitive to infection, LPS and Eto, but not Dex. Third, treatment with LPS, Eto and Dex reduced all three subpopulations of CD4+ CD8+ double-positive (DP) thymocytes, i.e. DP1, DP2 and DP3, but the DP3 subset was relatively more resistant during infection. Fourth, both CD4+ and CD8+ single-positive (SP) thymocytes were lowered by Eto and Dex, but not during infection. Notably, LPS lowered CD4+ SP subsets, whereas the CD8+ SP subsets were relatively more resistant. Interestingly, the reactive oxygen species quencher, N-acetyl cysteine, greatly improved the survival of thymocytes, especially DNs, ISPs and DPs, during infection and LPS treatment. The implications of these observations for the development of potential thymopoietic drugs are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。