Discovery of potential anti- Staphylococcus aureus natural products and their mechanistic studies using machine learning and molecular dynamic simulations

利用机器学习和分子动态模拟发现潜在的抗金黄色葡萄球菌天然产物及其机制研究

阅读:8
作者:Zinan Wang, Fei Pan, Min Zhang, Shan Liang, Wenli Tian

Abstract

The structure-activity analysis (SAR) and machine learning were used to investigate potential anti-S. aureus agents in a faster method. In this study, 24 oxygenated benzene ring components with S. aureus inhibition capacity were confirmed by literature exploring and in-house experiments, and the SAR analysis suggested that the hydroxyl group position may affect the anti-S. aureus activity. The 2D-MLR-QSAR model with 9 descriptors was further evaluated as the best model among the 21 models. After that, hesperetic acid and 2-HTPA were further explored and evaluated as the potential anti-S. aureus agents screening in the natural product clustering library through the best QSAR model calculation. The antibacterial capacities of hesperetic acid and 2-HTPA had been investigated and proved the similar predictive pMIC value resulting from the QSAR model. Besides, the two novel components were able to inhibit the growth of S. aureus by disrupting the cell membrane through the molecular dynamics simulation (MD), which further evidenced by scanning electron microscopy (SEM) test and PI dye results. Overall, these results are highly suggested that QSAR can be used to predict the antibacterial agents targeting S. aureus, which provides a new paradigm to research the molecular structure-antibacterial capacity relationship.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。