Induced pluripotent stem cells without c-Myc ameliorate retinal oxidative damage via paracrine effects and reduced oxidative stress in rats

不含 c-Myc 的诱导性多能干细胞通过旁分泌作用改善大鼠视网膜氧化损伤并降低氧化应激

阅读:5
作者:I-Mo Fang, Chang-Hao Yang, Shih-Hwa Chiou, Chung-May Yang

Conclusions

We demonstrated the potential benefits of non-c-Myc iPSC transplantation for treating oxidative-damage-induced retinal diseases. SDF-1α and bFGF play important roles in facilitating the amelioration of retinal oxidative damage after non-c-Myc iPSC transplantation.

Methods

Paraquat was intravitreously injected into Sprague-Dawley rats. After non-c-Myc iPSC transplantation, retinal function was evaluated by electroretinograms (ERGs). The generation of reactive oxygen species (ROS) was determined by lucigenin- and luminol-enhanced chemiluminescence. The expression of brain-derived neurotrophic factor, ciliary neurotrophic factor, basic fibroblast growth factor (bFGF), stromal cell-derived factor (SDF)-1α, and CXCR4 was measured by immunohistochemistry and ELISA. An in vitro study using SH-SY5Y cells was performed to verify the protective effects of SDF-1α.

Purpose

To investigate the efficacy and mechanisms of non-c-Myc induced pluripotent stem cell (iPSC) transplantation in a rat model of retinal oxidative damage.

Results

Transplantation of non-c-Myc iPSCs effectively promoted the recovery of the b-wave ratio in ERGs and significantly ameliorated retinal damage. Non-c-Myc iPSC transplantation decreased ROS production and increased the activities of superoxide dismutase and catalase, thereby reducing retinal oxidative damage and apoptotic cells. Moreover, non-c-Myc iPSC transplantation resulted in significant upregulation of SDF-1α, followed by bFGF, accompanied by a significant improvement in the ERG. In vitro studies confirmed that treatment with SDF-1α significantly reduced apoptosis in a dose-dependent manner in SH-SY5Y cells. Most transplanted cells remained in the subretinal space, with spare cells expressing neurofilament M markers at day 28. Six months after transplantation, no tumor formation was seen in animals with non-c-Myc iPSC grafts. Conclusions: We demonstrated the potential benefits of non-c-Myc iPSC transplantation for treating oxidative-damage-induced retinal diseases. SDF-1α and bFGF play important roles in facilitating the amelioration of retinal oxidative damage after non-c-Myc iPSC transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。