Lignin nanoparticles as a highly efficient adsorbent for the removal of methylene blue from aqueous media

木质素纳米粒子作为高效吸附剂去除水性介质中的亚甲蓝

阅读:10
作者:Reza Pourbaba, Ali Abdulkhani, Alimorad Rashidi, Alireza Ashori

Abstract

This work demonstrated enhanced adsorption capabilities of lignin nanoparticles (LNPs) synthesized via a straightforward hydrotropic method compared to pristine lignin (PL) powder for removing methylene blue dye from aqueous solutions. Kraft lignin was used as a precursor and p-toluenesulfonic acid as the hydrotrope to produce spherical LNPs with ~ 200 nm diameter. Extensive characterization by SEM, AFM, DLS, zeta potential, and BET verified successful fabrication of microporous LNPs with fourfold higher specific surface area (14.9 m2/g) compared to PL (3.4 m2/g). Significantly reduced particle agglomeration and rearranged surface chemistry (zeta potential of -13.3 mV) arising from the self-assembly of lignin fractions under hydrotropic conditions enabled the application of LNPs and superior adsorbents compared to PL. Batch adsorption experiments exhibited up to 14 times higher methylene blue removal capacity, from 20.74 for PL to 127.91 mg/g for LNPs, and ultrafast equilibrium uptake within 3 min for LNPs compared to 10 min for PL. Kinetic modeling based on pseudo-first-order and pseudo-second-order equations revealed chemisorption as the predominant mechanism, with a rate constant of 0.032825 g/mg·h for LNPs-over an order of magnitude higher than PL (0.07125 g/mg·h). Isotherm modeling indicated Langmuir monolayer adsorption behavior on relatively uniform lignin surface functional groups. The substantially augmented adsorption performance of LNPs arose from the increased surface area and abundance of surface functional groups, providing greater accessibility of chemically active binding sites for rapid dye uptake. Overall, this work demonstrates that tailoring lignin nanoparticle structure and surface chemistry via scalable hydrotropic synthesis is a simple and sustainable approach for producing highly efficient lignin-based nano-adsorbents for organic dye removal from industrial wastewater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。