Conclusions
These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.
Methods
Male C57Bl/6J mice with or without subdiaphragmatic vagotomy (sVNS) were subjected to medium-intensity treadmill exercise during HFD feeding. Glucose tolerance test and insulin tolerance test were detected, and spleen acetylcholine level, choline acetyltransferase activity (ChAT), protein kinase C (PKC) and tumor necrosis factor-alpha (TNF-α) were assayed.
Results
We found that exercise significantly improves HFD-induced glucose intolerance and insulin resistance, along with an increase in acetylcholine level, ChAT activity, and PKC activity, and decrease in TNF-α level in the system and the spleen from HFD-fed mice. However, sVNS abolished the beneficial effect of exercise on glucose intolerance and insulin resistance, decreased acetylcholine level, ChAT activity, and PKC activity, and increase TNF-α level of the spleen in HFD-mice exercise intervention. Conclusions: These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.
