Quantification of pharmaceutical compounds in tissue and plasma samples using selective ion accumulation with multiple mass isolation windows

使用具有多个质量隔离窗口的选择性离子积累对组织和血浆样本中的药物化合物进行定量分析

阅读:17
作者:Zhongling Liang, Boone M Prentice

Abstract

Quantification of pharmaceutical compounds using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an alternative to traditional liquid chromatography (LC)-MS techniques. Benefits of MALDI-based approaches include rapid analysis times for liquid samples and imaging mass spectrometry capabilities for tissue samples. As in most quantification experiments, the use of internal standards can compensate for spot-to-spot and shot-to-shot variability associated with MALDI sampling. However, the lack of chromatographic separation in traditional MALDI analyses results in diminished peak capacity due to the chemical noise background, which can be detrimental to the dynamic range and limit of detection of these approaches. These issues can be mitigated by using a hybrid mass spectrometer equipped with a quadrupole mass filter (QMF) that can be used to fractionate ions based on their mass-to-charge ratios. When the masses of the analytes and internal standards are sufficiently disparate in mass, it can be beneficial to effect multiple narrow mass isolation windows using the QMF, as opposed to a single wide mass isolation window, to minimize chemical noise while allowing for internal standard normalization. Herein, we demonstrate a MALDI MS quantification workflow incorporating multiple sequential mass isolation windows enabled on a QMF, which divides the total number of MALDI laser shots into multiple segments (i.e., one segment for each mass isolation window). This approach is illustrated through the quantitative analysis of the pharmaceutical compound enalapril in human plasma samples as well as the simultaneous quantification of three pharmaceutical compounds (enalapril, ramipril, and verapamil). Results show a decrease in the limit of detection, relative standard deviations below 10%, and accuracy above 85% for drug quantification using multiple mass isolation windows. This approach has also been applied to the quantification of enalapril in brain tissue from a rat dosed in vitro. The average concentration of enalapril determined by imaging mass spectrometry is in agreement with the concentration determined by LC-MS, giving an accuracy of 104%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。