Transcriptional activation of inflammasome components by Libby amphibole and the role of iron

利比闪石对炎症小体成分的转录激活及铁的作用

阅读:5
作者:J H Shannahan, A J Ghio, M C Schladweiler, J H Richards, D Andrews, S H Gavett, U P Kodavanti

Abstract

The induction of the NALP3 inflammasome complex is shown to be necessary for the development of fibrosis after asbestos exposure. Libby amphibole (LA) induces lung inflammation and fibrosis, while complexation of iron (Fe) on fibers inhibits inflammation. In this study we examined the ability of LA to induce the inflammasome cascade and the role of Fe in modulating inflammasome activity. Spontaneously hypertensive rats were exposed intratracheally to either saline (300 μl), deferoxamine (Def) (1 mg), FeCl(3) (21 μg), LA (0.5 mg), Fe-loaded LA (Fe + LA), or LA + Def. Activities of oxidative stress-sensitive enzymes, expression of inflammasome-specific genes, and cytokine proteins in bronchoalveolar lavage fluid were analyzed. Lung enzymes at 4 h and 24 h post-exposure were unchanged. LA increased lung expression of genes including interleukin-1β (IL-1β), cathepsin-B, ASC, NALP3, interleukin (IL)-6 and NFκB. LA+Fe significantly reduced IL-1β and NFκB with a trend of reduction in ASC, NALP3, cathepsin-B and IL-6 expression. Def treatment did not reverse the inhibitory effect of Fe on IL-1β and ASC but reversed IL-6 expression. CCL-7, CCL-12, CXCL-3 and COX-2 were induced by LA while LA+Fe tended to reduce these responses. Phosphorylation of ERK but not MEK was increased at 4 h after LA but not LA+Fe exposure. In conclusion, components of the NALP3 inflammasome are transcriptionally activated acutely during LA-induced inflammation. The key inflammatory regulators IL-1β and NFκB were inhibited in the presence of surface-complexed Fe possibly through decreased ERK signaling upstream of the NALP3 inflammasome. The inflammasome activation by LA may contribute to fibrosis, and Fe may reduce this response and alter compensatory mechanisms in individuals exposed to LA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。