A rapid multiplex cell-free assay on biochip to evaluate functional aspects of double-strand break repair

生物芯片上的快速多重无细胞检测以评估双链断裂修复的功能方面

阅读:4
作者:Xavier Tatin #, Giovanna Muggiolu #, Sarah Libert, David Béal, Thierry Maillet, Jean Breton, Sylvie Sauvaigo

Abstract

The repair of DNA double-strand breaks (DSBs) involves interdependent molecular pathways, of which the choice is crucial for a cell's fate when facing a damage. Growing evidence points toward the fact that DSB repair capacities correlate with disease aggressiveness, treatment response and treatment-related toxicities in cancer. Scientific and medical communities need more easy-to-use and efficient tools to rapidly estimate DSB repair capacities from a tissue, enable routine-accessible treatment personalization, and hopefully, improve survival. Here, we propose a new functional biochip assay (NEXT-SPOT) that characterizes DSB repair-engaged cellular pathways and provides qualitative and quantitative information on the contribution of several pathways in less than 2 h, from 10 mg of cell lysates. We introduce the NEXT-SPOT technology, detail the molecular characterizations of different repair steps occurring on the biochip, and show examples of DSB repair profiling using three cancer cell lines treated or not with a DSB-inducer (doxorubicin) and/or a DNA repair inhibitor (RAD51 inhibitor; DNA-PK inhibitor; PARP inhibitor). Among others, we demonstrate that NEXT-SPOT can accurately detect decreased activities in strand invasion and end-joining mechanisms following DNA-PK or RAD51 inhibition in DNA-PK-proficient cell lines. This approach offers an all-in-one reliable strategy to consider DSB repair capacities as predictive biomarkers easily translatable to the clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。