The progenitor state is maintained by lysine-specific demethylase 1-mediated epigenetic plasticity during Drosophila follicle cell development

在果蝇卵泡细胞发育过程中,祖细胞状态由赖氨酸特异性脱甲基酶1介导的表观遗传可塑性维持

阅读:9
作者:Ming-Chia Lee, Allan C Spradling

Abstract

Progenitors are early lineage cells that proliferate before the onset of terminal differentiation. Although widespread, the epigenetic mechanisms that control the progenitor state and the onset of differentiation remain elusive. By studying Drosophila ovarian follicle cell progenitors, we identified lysine-specific demethylase 1 (lsd1) and CoRest as differentiation regulators using a GAL4∷GFP variegation assay. The follicle cell progenitors in lsd1 or CoRest heterozygotes prematurely lose epigenetic plasticity, undergo the Notch-dependent mitotic-endocycle transition, and stop dividing before a normal number of follicle cells can be produced. Simultaneously reducing the dosage of the histone H3K4 methyltransferase Trithorax reverses these effects, suggesting that an Lsd1/CoRest complex times progenitor differentiation by controlling the stability of H3K4 methylation levels. Individual cells or small clones initially respond to Notch; hence, a critical level of epigenetic stabilization is acquired cell-autonomously and initiates differentiation by making progenitors responsive to pre-existing external signals.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。