Pure lignin induces overexpression of cytochrome P450 (CYP) encoding genes and brings insights into the lignocellulose depolymerization by Trametes villosa

纯木质素诱导细胞色素 P450 (CYP) 编码基因的过度表达,并为了解毛栓菌对木质纤维素的解聚提供了见解

阅读:8
作者:Luiz Marcelo Ribeiro Tomé, Mariana Teixeira Dornelles Parise, Doglas Parise, Vasco Ariston de Carvalho Azevedo, Bertram Brenig, Fernanda Badotti, Aristóteles Góes-Neto

Abstract

Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。