The Retinal Response to Sinusoidal Electrical Stimulation

视网膜对正弦电刺激的反应

阅读:6
作者:Perry Twyford, Shelley Fried

Abstract

Rectangular electrical pulses are the primary stimulus waveform used in retinal prosthetics as well as many other neural stimulation applications. Unfortunately, the utility of pulsatile stimuli is limited by the inability to avoid the activation of passing axons, which can result in the distortion of the spatial patterns of elicited neural activity. Because avoiding axons would likely improve clinical outcomes, the examination of alternate stimulus waveforms is warranted. Here, we studied the response of rabbit retinal ganglion cells (RGCs) to sinusoidal electrical stimulation applied at frequencies of 5, 10, 25, and 100 Hz. Targeted RGCs were restricted to 4 common types: OFF-Brisk Transient, OFF-Sustained, ON-Brisk Transient, and ON-Sustained. Interestingly, response patterns varied between different types; the most notable difference was the relatively weak response of ON-Sustained cells to low frequencies. Calculation of total spike counts per trial revealed that lower frequencies are more charge efficient than high frequencies. Finally, experiments utilizing synaptic blockers revealed that 5 and 10 Hz activate photoreceptors while 25 and 100 Hz activate RGCs. Taken together, our results suggest that while sinusoidal electrical stimulation may provide a useful research tool, its clinical utility may be limited.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。