Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates

TRPV4 蛋白假定的 S-亚硝化位点突变促进通道激活

阅读:6
作者:Eun Jeoung Lee, Sung Hwa Shin, Sunghee Hyun, Jaesun Chun, Sang Sun Kang

Abstract

The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues. Nitric oxide (NO) as a gaseous signal mediator shows a variety of important biological effects. In many instances, NO has been shown to exhibit its activities via a protein S-nitrosylation mechanism in order to regulate its protein functions. With functional assays via site-directed mutagenesis, we demonstrate herein that NO induces the S-nitrosylation of TRPV4 Ca(2+) channel on the Cys(853) residue, and the S-nitrosylation of Cys(853) reduced its channel sensitivity to 4-α phorbol 12,13-didecanoate and the interaction between TRPV4 and calmodulin. A patch clamp experiment and Ca(2+) image analysis show that the S-nitrosylation of Cys(853) modulates the TRPV4 channel as an inhibitor. Thus, our data suggest a novel regulatory mechanism of TRPV4 via NO-mediated S-nitrosylation on its Cys(853) residue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。