Determination of key residues in MRGPRX2 to enhance pseudo-allergic reactions induced by fluoroquinolones

确定MRGPRX2中增强氟喹诺酮类药物诱发的拟过敏反应的关键残基

阅读:5
作者:Eri Hamamura-Yasuno, Junya Matsushita, Seiji Sato, Takashi Shimada, Yoshimi Tsuchiya, Kazunori Fujimoto, Kazuhiko Mori

Abstract

MAS-related G protein-coupled receptor X2 (MRGPRX2), expressed in human mast cells, is associated with drug-induced pseudo-allergic reactions. Dogs are highly sensitive to the anaphylactoid reactions induced by certain drugs including fluoroquinolones. Recently, dog MRGPRX2 was identified as a functional ortholog of human MRGPRX2, with dog MRGPRX2 being particularly sensitive to fluoroquinolones. The aim of this study was to determine key residues responsible for the enhanced activity of fluoroquinolone-induced histamine release associated with MRGPRX2. Firstly, a structure model of human and dog MRGPRX2 was built by homology modeling, and docking simulations with fluoroquinolones were conducted. This model indicated that E164 and D184, conserved between human and dog, are essential for the binding to fluoroquinolones. In contrast, F78 (dog: Y) and M109 (dog: W) are unconserved residues, to which the species difference in fluoroquinolone sensitivity is attributable. Intracellular calcium mobilisation assay with human MRGPRX2 mutants, in which residues at positions 78 and 109 were substituted to those of dog MRGPRX2, revealed that M109 and F78 of human MRGPRX2 are crucial residues for enhancing the fluoroquinolone-induced histamine release. In conclusion, these key residues have important clinical implications for revealing the mechanisms and predicting the risks of fluoroquinolone-mediated pseudo-allergic reactions in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。