Reduction in Olfactory Discomfort in Inhabited Premises from Areas with Mofettas through Cellulosic Derivative-Polypropylene Hollow Fiber Composite Membranes

通过纤维素衍生物-聚丙烯中空纤维复合膜减少 Mofetta 区域居住场所的嗅觉不适

阅读:5
作者:Paul Constantin Albu, Andreia Pîrțac, Ludmila Motelica, Aurelia Cristina Nechifor, Geani Teodor Man, Alexandra Raluca Grosu, Szidonia-Katalin Tanczos, Vlad-Alexandru Grosu, Gheorghe Nechifor

Abstract

Hydrogen sulfide is present in active or extinct volcanic areas (mofettas). The habitable premises in these areas are affected by the presence of hydrogen sulfide, which, even in low concentrations, gives off a bad to unbearable smell. If the living spaces considered are closed enclosures, then a system can be designed to reduce the concentration of hydrogen sulfide. This paper presents a membrane-based way to reduce the hydrogen sulfide concentration to acceptable limits using a cellulosic derivative-propylene hollow fiber-based composite membrane module. The cellulosic derivatives considered were: carboxymethyl-cellulose (NaCMC), P1; cellulose acetate (CA), P2; methyl 2-hydroxyethyl-cellulose (MHEC), P3; and hydroxyethyl-cellulose (HEC), P4. In the permeation module, hydrogen sulfide is captured with a solution of cadmium that forms cadmium sulfide, usable as a luminescent substance. The composite membranes were characterized by SEM, EDAX, FTIR, FTIR 2D maps, thermal analysis (TG and DSC), and from the perspective of hydrogen sulfide air removal performance. To determine the process performances, the variables were as follows: the nature of the cellulosic derivative-polypropylene hollow fiber composite membrane, the concentration of hydrogen sulfide in the polluted air, the flow rate of polluted air, and the pH of the cadmium nitrate solution. The pertraction efficiency was highest for the sodium carboxymethyl-cellulose (NaCMC)-polypropylene hollow fiber membrane, with a hydrogen sulfide concentration in the polluted air of 20 ppm, a polluted air flow rate (QH2S) of 50 L/min, and a pH of 2 and 4. The hydrogen sulfide flux rates, for membrane P1, fall between 0.25 × 10-7 mol·m2·s-1 for the values of QH2S = 150 L/min, CH2S = 20 ppm, and pH = 2 and 0.67 × 10-7 mol·m-2·s-1 for the values of QH2S = 50 L/min, CH2S = 60 ppm, and pH = 2. The paper proposes a simple air purification system containing hydrogen sulfide, using a module with composite cellulosic derivative-polypropylene hollow fiber membranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。