Differential hyperpolarization to substance P and calcitonin gene-related peptide in smooth muscle versus endothelium of mouse mesenteric artery

小鼠肠系膜动脉平滑肌和内皮细胞对P物质和降钙素基因相关肽的差异性超极化

阅读:5
作者:Charles E Norton, Erika M Boerman, Steven S Segal

Conclusions

Calcitonin gene-related peptide elicits greater hyperpolarization than substance P. Substance P hyperpolarizes both cell layers through KCa channels and involves endothelium-derived NO in smooth muscle. Endothelial hyperpolarization to CGRP requires KCa channels, while KATP channels mediate hyperpolarization in smooth muscle. Differential K+ channel activation in smooth muscle and endothelium through sensory neurotransmission may selectively tune mesenteric blood flow.

Methods

Microelectrodes recorded membrane potential of smooth muscle from pressurized mouse mesenteric arteries (diameter, ~150 µm) and in endothelial tubes.

Objective

We sought to define how sensory neurotransmitters substance P and calcitonin gene-related peptide (CGRP) affect membrane potential of vascular smooth muscle and endothelium.

Results

Resting potential was similar (~ -45 mV) for each cell layer. Substance P hyperpolarized smooth muscle and endothelium ~ -15 mV; smooth muscle hyperpolarization was abolished by endothelial disruption or NO synthase inhibition. Blocking KCa channels (apamin + charybdotoxin) attenuated hyperpolarization in both cell types. CGRP hyperpolarized endothelium and smooth muscle ~ -30 mV; smooth muscle hyperpolarization was independent of endothelium. Blocking KCa channels prevented hyperpolarization to CGRP in endothelium but not smooth muscle. Inhibiting KATP channels with glibenclamide or genetic deletion of KIR 6.1 attenuated hyperpolarization in smooth muscle but not endothelium. Pinacidil (KATP channel agonist) hyperpolarized smooth muscle more than endothelium (~ -35 vs. ~ -20 mV). Conclusions: Calcitonin gene-related peptide elicits greater hyperpolarization than substance P. Substance P hyperpolarizes both cell layers through KCa channels and involves endothelium-derived NO in smooth muscle. Endothelial hyperpolarization to CGRP requires KCa channels, while KATP channels mediate hyperpolarization in smooth muscle. Differential K+ channel activation in smooth muscle and endothelium through sensory neurotransmission may selectively tune mesenteric blood flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。