MoO3 with the Synergistic Effect of Sulfur Doping and Oxygen Vacancies: The Influence of S Doping on the Structure, Morphology, and Optoelectronic Properties

硫掺杂与氧空位协同作用的 MoO3:S 掺杂对结构、形貌及光电性能的影响

阅读:4
作者:Jian Yu, Zhaokang Zheng, Aiwu Wang, Muhammad Humayun, Yasser A Attia

Abstract

Molybdenum trioxide (MoO3) is an attractive semiconductor. Thus, bandgap engineering toward photoelectronic applications is appealing yet not well studied. Here, we report the incorporation of sulfur atoms into MoO3, using sulfur powder as a source of sulfur, via a self-developed hydrothermal synthesis approach. The formation of Mo-S bonds in the MoO3 material with the synergistic effect of sulfur doping and oxygen vacancies (designated as S-MoO3-x) is confirmed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The bandgap is tuned from 2.68 eV to 2.57 eV upon sulfur doping, as confirmed by UV-VIS DRS spectra. Some MoS2 phase is identified with sulfur doping by referring to the photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS), allowing significantly improved charge carrier separation and electron transfer efficiency. Therefore, the as-prepared S-MoO3-x delivers a sensitive photocurrent response and splendid cycling stability. This study on the synergistic effect of sulfur doping and oxygen vacancies provides key insights into the impact of doping strategies on MoO3 performance, paving new pathways for its optimization and development in relevant fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。