Response of the Endogenous Antioxidant Defense System Induced in RAW 264.7 Macrophages upon Exposure to Dextran-Coated Iron Oxide Nanoparticles

RAW 264.7 巨噬细胞暴露于葡聚糖包被的氧化铁纳米粒子后内源性抗氧化防御系统的反应

阅读:6
作者:Mihaela Balas, Simona Liliana Iconaru, Anca Dinischiotu, Nicolas Buton, Daniela Predoi

Abstract

Presently, iron oxide nanoparticles are the only ones approved for clinical use as contrast agents in magnetic resonance imaging (MRI). Even though there is a high demand for these types of nanoparticles both for clinical use as well as for research, there are difficulties in obtaining stable nanoparticles with reproducible properties. In this context, in this study, we report the obtaining by an adapted coprecipitation method of dextran-coated maghemite nanoparticles (ɤ-Fe2O3 NPs). The morphology and structure of the dextran-coated maghemite nanoparticles (ɤ-Fe2O3 NPs) were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The TEM and SEM micrographs highlighted the obtaining of particles of nanometric size and spherical shape morphology. Furthermore, the high-resolution transmission electron microscopy (HRTEM), as well as selected area diffraction (SAED), revealed that the obtained samples presented the structure of cubic maghemite. In this study, we also explored the effects of the co-precipitation synthesized dextran-coated maghemite nanoparticles (ɤ-Fe2O3 NPs) on the redox status of macrophages. For cytotoxicity evaluation of these NPs, murine macrophages (RAW 264.7 cell line) were exposed to different concentrations of dextran-coated maghemite nanoparticles (ɤ-Fe2O3 NPs) corresponding to 0-500 μg Fe3+/mL and incubated for 24, 48, and 72 h. Intracellular iron uptake, changes in the oxidative stress parameters (reactive oxygen species production and malondialdehyde level), and the activity of antioxidant enzymes, as well as GSH concentration in cells, were evaluated after incubation with a lower (50 μg Fe3+/mL) and higher (500 μg Fe3+/mL) dose of NPs. The results indicated a significant decrease in RAW 264.7 cell viability after 72 h in the presence of NPs at concentrations above 25 μg Fe3+/mL. An important accumulation of NPs, dependent on dose and exposure time, was detected in macrophages, but it induced only a limited raise in the oxidative status. We showed here that the antioxidant capacity of RAW 264.7 macrophages was efficient in counteracting dextran-coated maghemite nanoparticles (ɤ-Fe2O3 NPs) toxicity even at higher doses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。