The Downregulation of CRIF1 Exerts Antitumor Effects Partially via TP53-Induced Glycolysis and Apoptosis Regulator Induction in BT549 Breast Cancer Cells

CRIF1 下调在 BT549 乳腺癌细胞中部分通过 TP53 诱导的糖酵解和凋亡调节诱导发挥抗肿瘤作用

阅读:5
作者:Shuyu Piao, Seonhee Kim, Giang-Huong Vu, Minsoo Kim, Eun-Ok Lee, Byeong Hwa Jeon, Cuk-Seong Kim

Conclusions

These results indicate that blocking mitochondrial OXPHOS synthesis via CRIF1 may have a therapeutic antitumor effect in BT549 TNBC cells.

Results

We showed that the downregulation of CRIF1 reduced cell proliferation in the TNBC cell lines MDA-MB-468, MDA-MB-231, and, especially, BT549. In addition, wound scratch and Transwell assays showed that CRIF1 deficiency inhibited the migration and invasion of BT549 cells. CRIF1 downregulation resulted in the suppression of mitochondrial bioenergetics in BT549 cells, specifically affecting the inhibition of OXPHOS complexes I and II. This was evidenced by a decrease in the mitochondrial oxygen consumption rate and the depolarization of the mitochondrial membrane potential. Damage to mitochondria resulted in a lower adenosine triphosphate level and an elevated production of mitochondrial reactive oxygen species. In addition, CRIF1 deficiency decreased hypoxia-inducible factor 1α accumulation, NADPH synthesis, and TP53-induced glycolysis and apoptosis regulator (TIGAR) expression in BT549 cells. These events contributed to G0/G1-phase cell cycle inhibition and the upregulation of the cell cycle protein markers p53, p21, and p16. Transfection with a TIGAR overexpression plasmid reversed these effects and prevented CRIF1 downregulation-induced proliferation and migration reduction. Conclusions: These results indicate that blocking mitochondrial OXPHOS synthesis via CRIF1 may have a therapeutic antitumor effect in BT549 TNBC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。